Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

Re-exam June- 2018

Max. Marks:100

Duration: 3.00 Hrs

Class: B.Tech. (Electrical)

Semester: VII Program: Electrical Engineering

Name of the Course: High Voltage Engineering

Course Code: BTE408

Instructions:

1. Question No 1 is compulsory.

2. Attempt any four questions out of remaining six.

3. Draw neat diagrams

4. Assume suitable data if necessary

Que.		Max.	C.O.	Mod.
No No		Marks	No.	No.
Q.1(a)	Derive expression for current growth equation in terms Townsend's primary and secondary ionization coefficient.	15	01	02
(b)	Draw and explain test cell and closed cycle purification system for reconditioning of transformer oil.	05	01	03
Q2(a)	Explain the term: 1. Solid dielectric used in practice 2. Reactor series resonance circuit 3. Characteristics of liquid dielectric	10	02	04 05 03
(b)	Discuss the effect of following parameters on the breakdown strength of liquids: a) Suspended particle mechanism b) Cavitation and bubble mechanism c) Stressed oil volume mechanism	10	03	03
Q3(a)	A solid specimen of dielectric has a dielectric constant of 4.2 and $tan\delta$ as 0.001 at a frequency of 50 Hz. If it is subjected to an alternating field of 50kV/cm, calculate the heat generated in the specimen due to the dielectric loss.	03	02	04
(b)	Explain the term: i) Voltage doubler circuit ii) Resistance potential divider for DC voltage measurement iii) Streamer Theory iv) Breakdown in composite dielectric	12	1,3	05 06 02 04
(c)	How is the Electric stress/electric field intensity controlled?	05	01	01
Q4(a)	What is "finite element method"? Find local coefficient matrix and global coefficient matrix of given geometry	10	03	01

			1	
	V = 10 Node (x,y) $1 (0.6, 0.6)$ $2 (1.2, 1.2)$ $3 (1.8, 1.8)$ $4 (1.0, 2.4)$			
(b)	Describe with a neat sketch, the working of Van de Graaff generator. What are the factors that limits the maximum voltage obtained	07	02	05
(c)	What is critical threshold distance for sustained discharge if $\alpha = 3.43/cm$ and $\gamma = 5.635 \times 10^{-4}$.	03	01	02
Q5(a)	A 100 kVA, 400 V/250 kV testing transformer has 8% leakagereactance and 2% resistance on 100 kVA base. A cable has to be tested at 500 kVusing the above transformer as a resonant transformer at 50 Hz. If the charging current of the cable at 500 kV is 0.4 A, find the series inductance required. Assume 2% resistance for the inductor to be used and the connecting leads. Neglect dielectric lossof the cable. What will be the input voltage to the transformer?	10	02	05
(b)	Explain 'Generating Voltmeter' for H.V. measurement and prove that	10	01	06
(b) Q6(a)	Explain 'Generating Voltmeter' for H.V. measurement	10	01	06
	Explain 'Generating Voltmeter' for H.V. measurement and prove that $i_{rms} = \frac{VC_m\omega}{\sqrt{2}}$ What is Paschen's law? Prove that breakdown condition in gases is depend on ' $p \times d$ ' only. Explain in detail "Post breakdown phenomenon and its applications" in gases	05	01	02
Q6(a)	Explain 'Generating Voltmeter' for H.V. measurement and prove that $i_{rms} = \frac{VC_m\omega}{\sqrt{2}}$ What is Paschen's law? Prove that breakdown condition in gases is depend on ' $p \times d$ ' only.	05	01	02
(b)	Explain 'Generating Voltmeter' for H.V. measurement and prove that $i_{rms} = \frac{VC_m\omega}{\sqrt{2}}$ What is Paschen's law? Prove that breakdown condition in gases is depend on ' $p \times d$ ' only. Explain in detail "Post breakdown phenomenon and its applications" in gases. What are the criteria used in selecting ratings of the testing	05	01	02
Q6(a)	Explain 'Generating Voltmeter' for H.V. measurement and prove that $i_{rms} = \frac{VC_m\omega}{\sqrt{2}}$ What is Paschen's law? Prove that breakdown condition in gases is depend on ' $p \times d$ ' only. Explain in detail "Post breakdown phenomenon and its applications" in gases. What are the criteria used in selecting ratings of the testing equipment for HV laboratories? A generating voltmeter has to be designed so that it can have a range from 10 to 100 kV d.c. If the indicating meter reads a minimum current of 1.5 uA and maximum current of 18 μ A, what	05 05 10	01 01 04	02

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

Date: June 2018

Semester: VII

Course code: BTE407

ReExamination

Program: Electrical Engineering

Duration: 3 hrs.

Maximum Marks: 100

Course Name: Image Processing

Instructions: Q1. is compulsory. Solve any 4 questions from the remaining six.

Q. No.	Ques	stions				Max Mark s	C O No	Mod ule No.
1. a	comp		by r		sional DFT/IDFT of an image can be column passes with one dimensional	05	4	6
b				•	ss (HP) filter can be obtained as (Assume a 3x 3 mask)	05	3	3
c	With	an e	xamp	ole exp	ain 4-, 8- and m- adjacency in images.	05	1	1
d	_	•		_	epends on number of pixels and gray levels or contradict.	05	1	1
2 a	1			_	ge, find negative of an image, bit plane odifications.	10	2	2
	10	4	3	7				
	14	13	7	12				
	5	6	8	4				
	3	6	9	8			e, makang may yan mangaka	
b	1 -	ain w		xample	frequency domain image enhancement	10	3	3
3 a	(i		Lapl Sobe	lacian el Opei	performed in digital images using Operator ator erator	10	3	3

	Compare the	eir outcomes		*					
b	Describe His Equalization Write inferen	on the follo	wing 8 bit is	mage segme	nt of size 5x5		3	3	
	180	180	180	160	220				
	160	160	160	160	170				
	170	170	170	170	160				
	170	180	200	200	220				
	210	160	170	190	210				
4 a	Consider an	image matr	ix given by			10	4	6	
	2 1								
	1 2								
	Find 2D cosi	ne transfort	n and 2D di	screte Four	ier Transforn	n			
b	What is Had	amard tran	sform? Disc	uss its appli	cation.	10	4	06	
	Compute Hadamard transform of the image								
	3	2	T	3	2				
	2	3		4	3				
	3	4		5	4				
	2	3		4	3				
5 a	Explain follo	wing morpl	ological op	erations		10	3	5	
								1	
	(i) Boundary	Extraction	(ii) Hit or	Miss Trans	formation				
	(i) Boundary			Miss Trans	formation				
b		and Thicke	ning		formation	10	3	5	
b	(iii)Thinning Which morp (i) Re	and Thicke	ning chniques ar ructures of	e used for certain shap	e and size.	10	3	5	
b	(iii)Thinning Which morp (i) Ro (ii) Fi	and Thicke hological te emoval of st lling of hole	ning chniques ar ructures of	e used for	e and size.	10	3	5	
b 6 a	(iii)Thinning Which morp (i) Re	and Thicke hological te emoval of st lling of hole example.	chniques ar ructures of s of certain	e used for certain shap shape and s	e and size. ize.	10	5	5	
	(iii)Thinning Which morp (i) Ro (ii) Fi Explain with	and Thicke hological te- emoval of st lling of hole example. example in	chniques ar ructures of s of certain	e used for certain shap shape and s	oe and size. ize. vector				

10 ,

,	advantages and disadvantages of the same.			
7 a	Explain steps in JPEG image formation	10	5	7
b	With a neat block diagram explain various components of image processing.	10	1	1
	Explain any one application which uses various image processing methods			

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

ODD SEM REEXAMINATION JUNE 2018

Program: Electrical Engg

Duration: 3 hrs.

Maximum Marks: 100

Date: November 2017

Course code: BTE404

Semester: VII

Name of the Course: ADSMC

Instructions: Solve any 5 questions.

Question Number	Questions	Max. point s
Q1) a)	Explain working of practical Forward converter using circuit diagram and waveforms of primary voltage, primary current, output voltage, output current, and voltage across switch.	12
b)	Which type of snubber circuit is required to be used with transistors? Explain one of it using waveforms of switching voltage and current	8
Q2)a)	What is ZCS Resonant Switch Converter? Explain the operation with relevant waveforms.	10
b)	The ZCS resonant converter shown below, delivers maximum power of PL= $1W$ at $V_0=5V$. The supply voltage is $V_S=15V$. The maximum operating frequency is $f_{max}=40$ KHz. Determine L & C. Assume that t1, t2 are small and $x=l_m/l_0=1.5$	10
Q3)a)	Explain necessity of heat sink in power electronics components. Explain heat transfer mechanisms.	12

b)	Explain Fly back converter using circuit diagram.	8
Q4) a)	In a step down converter consider all components to be ideal. Let V_0 be held constant at 5 V by controlling the switch duty ratio D. Calculate the minimum inductance L required to keep converter operation in continuous conduction mode under all conditions if V_d is 10 V – 40 V, $P_0 >=5$ W and $f_s = 50$ KHz.	12
b)	What are the issues in inductive current switching in case of switched mode converters? How these issues are addressed.	10
Q5)	Elaborate Fly-back converter working in continuous conduction mode using waveforms like source current, inductor voltage and capacitor current.	20
Q6)	With the help of circuit diagram and waveforms explain full bridge transformer isolated buck converter.	20
Q7)	Design an inductor for a Buck Converter configuration as shown in figure below, for the following specifications: Output voltage, $V_0 = 5V$, output current, $I_0 = 5A$, Switching frequency, $f_s = 40$ KHz, input voltage, $V_g = 12V + /-10\%$ (assume: $B_m = 0.2T$ for ferrite, $J = 3A/mm^2(3X10^6 A/m^2)$, Kc=1 (for square wave) and $K_w = 0.6$ use appendix 1 and 2 for standard values)	20
To the	Switch Coad Coad Coad Coad Coad Coad Coad Coad	

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar. Andheri (West), Mumbai 400058.

KT Exam

November 2017 / May 2018

Max. Marks: 100

Class: BTech (Electrical)

Semester: VII

Name of the Course: RENEWABLE ENERGY

Q. P. Code:

Duration: 3 Hrs Program: UG

Course Code: BTE403

Instructions:

Answer any five questions from Q1 to Q7.

Assume suitable data & necessary neat diagrams wherever required.

Question No		Maximum Marks	Course Outcome Number	Modul Numbe
Q1	Explain the following: a. Solar radiation measurement. b. Electricity generation using Solar concentrators	10 10	l J	1 2
Q2	 a. Explain the Performance indices of solar collectors. b. Compare the performance of Flat Plate & concentrating-type collectors used for electricity generation. 	10 10	2	1
Q3	a. What are the major components & its functions of a wind turbineb. With a neat sketch explain solar pond electric power plant.	10 10	3	5
Q4	a. Methods to convert Ocean thermal energy in to electricityb. Scope & economics and availability of Wave & tidal energy	10 10	3	6 7
Q5	Significance of the following with reference to Solar photo voltaic cell: a. I-V & P-V characteristics b. Effect of variation of insolation & temperature on I-V & P-V characteristics.	10 10	4	2

Q6	With reference to Solar photo voltaic cell explain: a. Solar PV module b. Cell mismatch in a module c. Effect of shadowing d. Solar PV Panel & Array	05 05 05 05	3 3 3 3	.2
	Explain any two from the following:		-	
	a. Power-speed characteristic of wind turbine	10	2	5
Q 7	b. Wind energy conversion systems (WECS)	10	2	5
	c. Electricity generation from Wave & tidal energy	10	2	7
	d. Biogas plant for electricity generation	10	1 2	1

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

End Sem Exam (KT)

June 2018

Max. Marks: 100

Duration: 3 hr

Class: Final Year

Semester: VII

Program: Electrical Engineering

Name of the Course: Electronic Instrumentation

Course Code: BTE402

Instructions:

- Question No. 1 is Compulsory.
- Solve any four of remaining six questions.
- Illustrate your answers with neat sketches wherever necessary.
- Assume suitable data if required.
- Preferably, write the answers in sequential order.

Question No.		M N	C O	Max. Marks
Q1.A)	Explain Basic Characteristics of Instruments.	1	1	5
B)	An electrically deflected CRT has a final anode voltage of	3	2	4
	1000V and parallel deflecting plates 1.7 cm long and 7 mm			
	apart. If the screen is 50 cm from the centre of deflecting			
	plates, find (a) beam speed, (b) the deflection sensitivity of the			
	tube, and (c) the deflection factor of the tube.			
C)	What are the different ways to program a PLC? Explain.	6	3	5
D)	Find the output of a 4 bit R2R DAC where the input is 1101.	4	4	6
Q2.A)	Name and explain any 5 static characteristics of an instrument.	1	1	10
B)	Draw and explain the block diagram of pulse generator.	2	1	10
Q3.A)	Draw and explain internal structure of CRT.	3	2	10
B)	Draw and explain CRT of storage type oscilloscope.	3	2	10
Q4.A)	A Wein's Bridge oscillator is required to generate a sinusoidal	2	1	5
	waveform of 5200 Hz. Draw the circuit and calculate the			
	values of the frequency determining resistors R ₁ , R ₂ and R ₃ , R ₄			
	and two capacitances C ₁ ,C ₂ to produce the required frequency.			

Which are the components of an analog data acquisition B) system? Explain. 7 What are the types of multiplexing system? Explain. 4 4 C) With a neat block diagram explain process control system 5 5 3 Q5.A) Explain proportional control mode of operation? How 5 3 7 B) proportional band varies with gain? What is an offset? 8 3 5 Suppose the error, in fig, is applied to a PID controller with K_{P} **C**) = 5, $K_I = 0.6 \text{ s}^{-1}$, $K_D = 0.5 \text{ s}$, $P_I (0) = 10\%$. Draw a plot of the controller output.

7 3 With neat block diagram explain PLC. 6 Q6. A) Draw the block diagram of a sweep generator using a 5 1 B) heterodyne frequency generator. What is the function of frequency sweeper block? 8 3 6 Explain the following instructions in PLC: C) a) OSR b) Latch and unlatch instruction c) Timer instruction d) Negated output instruction What is the need of calibration? What are the risks involved in 5 Q7.A) not calibrating an instrument. 8 7 Data are shown in the table B) 200 Output level-start Input level-start 100

110

Input level-end

Output graph is shown in fig.(Assume suitable data if necessary)

- 1. Use reaction curve method to process the data and produce the tuning parameters for a PI controller
- 2. Fit an appropriate first order plus delay time model transfer function, given by $\frac{Ke^{-sT_d}}{\tau_s+1}$
- C) The data given correspond to a sustained oscillation test. 7 4 7

 Process the data and produce the tuning parameters for a PID controller using the rules to give ¼ decay output.

Input reference	6.5 cm
Output level start	6.5 cm
Oscillating gain value	2

